7. Cragg, L. H., and H. van Oene, Can. J. Chem., 39, 203 (1961).
8. Schulken, R. M., and M. L. Sparks, J. Polymer Sci., 26, 227 (1957).
H. P. Schreiber
S. H. Storey
H. W. Holden

Central Research Laboratory Canadian Industries Limited, McMasterville, Quebec, Canada
Received June 15, 1962

On the Crystal Transformation of Poly [3,3-(bis-chloromethyl) oxacyclobutane]

The crystalline structure of poly [3,3-(bis-chloromethyl)oxacyclobutane] was investigated by Sandiford. ${ }^{1}$ According to his study, two crystal forms, α and β, are found in the polymer: The α form results when the polymer is annealed through its molten state, whereas the quenched amorphous polymer crystallizes into the β-form when its temperature is raised above the glass transition temperature.

Fig. 1. X-ray diffraction curves under various crystallizing conditions: (A) annealed through molten state; (B) crystallized at $113^{\circ} \mathrm{C}$. after quenching; (C) cast from cyclohexanone solution; (D) hot-pressed; (E) crystallized at room temperature after quenching.

Sandiford gave the unit cell dimensions of the β form (monoclinic) as $a=6.85, b=11.42$, and $c=4.75 \mathrm{~A}$., and $\beta=109^{\circ} 48^{\prime}$. However, he did not refer to the dimensions of the α form. Recently Hatano and Kambara ${ }^{2}$ investigated the crystal forms of the polymer with x-ray diffractometry and found the crystallizing behavior to be the same as that reported by Sandiford. However, the phenomena of the transformations between the α and β forms have never been examined.

In the present work, the crystallizing behavior and the transformation of crystal forms of this polymer were studied with x-ray diffractometry and infrared spectroscopy. X-ray diffraction curves of the α and β forms are shown in Figure 1 as A and B respectively. Film sample A was prepared by annealing at $160^{\circ} \mathrm{C}$. for 3 hr . through its molten state, and then slow cooling to $120^{\circ} \mathrm{C}$. during a period of 4 hr . Sample B was heat-treated at $113^{\circ} \mathrm{C}$. during a period of $6^{1 / 2} \mathrm{hr}$., having first been quenched through its molten state in ice water. The patterns of x-ray diffraction of sample A and sample B agree with those of the α and β forms examined by Hatano and Kambara. ${ }^{2}$ The original film samples were obtained from a cyclohexanone solution of the polymer which had been cast into film at $100^{\circ} \mathrm{C}$. With respect to the x-ray diffraction curve of sample D , (hot-pressed, $200 \mathrm{~kg} . / \mathrm{cm}^{2}{ }^{2}$ at $190^{\circ} \mathrm{C}$.), Figure 1 , its crystal is almost the same as the β form. The curve of sample \mathbf{E}, which had been crystallized for several hours at room temperature after having first been quenched in ice water, is almost identical with that of sample B. This experimental result shows that (1) the quenched amorphous polymer is

Fig. 2. Effect of temperature on x-ray diffraction curve of the sample E. Temperature of the sample was raised from room temperature up to $180^{\circ} \mathrm{C}$.; (*) gradually cooled to $100^{\circ} \mathrm{C}$. after having been kept at $180^{\circ} \mathrm{C}$.

Fig. 3. Infrared spectra under various crystallizing conditions: (A) annealed through molten state; (B) crystallized at $113^{\circ} \mathrm{C}$. after having been quenched; (C) cast from cyclohexanone solution; (M) melted at $197^{\circ} \mathrm{C}$.
readily crystallized in the structure of the β form when it is allowed to crystallize even at room temperature, and (2) the glass transition temperature of the polymer exists below room temperature.
Transformation of the crystal form of sample E from β to α occurs at a temperature around $130^{\circ} \mathrm{C}$., as shown in Figure 2. With a rise in temperature, crystalline peaks of the β form are changed to those of the α form at a temperature around $130^{\circ} \mathrm{C}$. At $150^{\circ} \mathrm{C}$. more prominent α peaks are observed. The diffraction curve of the sample which had been slowly cooled to $100^{\circ} \mathrm{C}$. after having been kept at $180^{\circ} \mathrm{C}$. during several minutes have shown only α peaks. However, it is interesting that peaks of both α and β form are recognizable in the diffraction curve of the original film sample C (Fig. 1) which was cast from the cyclohexanone solution and was not heat-treated.

We have confirmed the results mentioned above by the infrared method. The infrared spectra of sample A, α form, and that of B, β form, are shown in Figure 3. A remarkable difference is found in the behavior of the bands at 1325 and at $1315 \mathrm{~cm} .^{-1}$. However, no other noticeable spectral differences are observed. Hence we carefully examined the intensity changes of the bands at $1325 \mathrm{~cm} .^{-1}$ and at $1315 \mathrm{~cm} .^{-1}$ effected by varying temperatures of sample E. The temperature of the sample was gradually raised from
room temperature up to the melting point of the polymer, and then was slowly lowered to room temperature. Temperature dependence of the optical densities of the bands at 1325 and $1315 \mathrm{~cm} .^{-1}$ is shown in Figures 4 and 5. With a rise in temperature of sample E, whose crystal structure was supposed to be β, the intensity of the band at $1315 \mathrm{~cm} .^{-1}$ decreases. However, the band at $1325 \mathrm{~cm} .^{-1}$ strengthens when the temperature of the sample is raised to a temperature around $130^{\circ} \mathrm{C}$. The intensities of both of the bands are decreased when the sample is melted at $185^{\circ} \mathrm{C}$. The intensity of the band at $1325 \mathrm{~cm} .^{-1}$ grows very strong when the sample is gradually cooled through its molten state to room temperature. However, the intensity at $1315 \mathrm{~cm} .^{-1}$ is not recovered, although it was strong in the spectrum prior to the melting of the sample. It is supposed that the film thickness of the samples are not changed with heating.

Considering the results obtained by the x-ray method, it is interpreted that the bands at $1325 \mathrm{~cm} .^{-1}$ and at $1315 \mathrm{~cm} .^{-1}$ are caused by the vibrations in the crystal of the α form and of β form respectively. Thus, we conclude that (1) an amount of α form or of β form in the crystal structure of the polymer can be quantitatively determined by measuring the intensity of the band at $1325 \mathrm{~cm} .^{-1}$ or of the band at 1315 $\mathrm{cm} .^{-1}$ respectively, and (2) the crystal transformation from β to α, which occurs at about $130^{\circ} \mathrm{C}$., is confirmed by in-

Fig. 4. Effect of temperature on the bands at 1325 $\mathrm{cm} .^{-1}$ and at $1315 \mathrm{~cm} .^{-1}$ of the sample E. Temperature of the sample was raised from room temperature up to melting temperature. (1) at $32^{\circ} \mathrm{C} . ;$ (2) at $155^{\circ} \mathrm{C}$; (3) slowly cooled to $35^{\circ} \mathrm{C}$. after having been melted; (C) cast from cyclohexanone solution.

Fig. 5. Temperature dependence of optical densities of the bands at $1325 \mathrm{~cm} .^{-1}(\mathrm{O})$ and $1315 \mathrm{~cm} .^{-1}(\bullet)$. Sample E was heated from room temperature up to melting temperature, and ("double circle" for 1325 and "circle with heavy center dot" for 1315) slowly cooled to $35^{\circ} \mathrm{C}$. through molten state.
frared spectroscopy as well as x-ray measurements.
The infrared spectra of sample C and its characteristic part of the absorption band are shown in Figures 3 and 4. The doublet of the band at 1325 and $1315 \mathrm{~cm} .^{-1}$ observed in the spectrum of the sample gives the same result as that obtained by x-ray measurement, so it is supposed that the crystal structure of sample C is composed of both the α and β forms.

In comparing the infrared spectrum of polymer in the molten state (sample M) with spectra of A and B, many crystallization-sensitive bands are recognized. Yet, no

Fig. 6. Infrared dichroism of stretched sample: ($\alpha-S$) stretched in α-form; (β-S) stretched in β-form; (-) electric vector perpendicular to elongation; (--) electric vector parallel to elongation.

Fig. 7. Fiber photographs of the stretched samples: (a) stretched α form; (b) stretched β form.
other bands characteristic of the α or β form except those at 1325 and $1315 \mathrm{~cm} .^{-1}$ are observed. The crystallizationsensitive bands common to both forms are observed at 1050, 897, 698, 601, 527, and $428 \mathrm{~cm} .^{-1}$. The band at $1017 \mathrm{~cm} .^{-1}$ becomes strong in its intensity when the sample is melted, and it corresponds to the amorphous band at $1027 \mathrm{~cm} .^{-1}$ studied by Hatano and Kambara. ${ }^{3}$

Infrared dichroisms were measured on the stretched sample of α form ($\alpha-\mathrm{S}$) and of the β form ($\beta-\mathrm{S}$); these are shown in Figure 6. $\alpha-S$ was prepared by stretching the film to a length four times the original length in a glycerine bath at $150^{\circ} \mathrm{C}$. and keeping it in the bath for 4 hr . $\beta-\mathrm{S}$ was prepared by stretching the quenched sample to a length five times the original, at room temperature. Remarkable differences in dichroic nature between the α and β forms are not found. The orientation character along the molecular chain of both structures may be considered to be the same. The identity period of the α form is the same as that of the β, or about 4.8 A .; it was determined from the fiber photographs shown in Figure 7. However, no details concerning the molecular structure of either form were found in the present study.

We wish to thank Dr. M. Takeda for his helpful discussion, and Mr. S. Saito for his kind offering of the sample.

References

1. Sandiford. D. J. H., J. Appl. Chem., 8, 188 (1958).
2. Hatano, M., and S. Kambara, Kogyō Kagaku Zasshi, 62, 290 (1959).
3. Hatano, M., and S. Kambara, Polymer, 2, 1 (1961).

Kazuyoshi Imura Shōichi Kondó
Department of Chemistry
Tokyo College of Science
Kagurazaka 1-3, Shinjuku-ku
Tokyo, Japan
Received November 13, 1961

Inhibitor Technique for Chemical Stress Relaxation

For rubber networks undergoing random oxidative scission, the number of moles of cuts $q(t)$ that have been produced up to time t can be measured by stress relaxation at constant extension using the equation: ${ }^{1}$

$$
\begin{equation*}
q(t)=-N_{0} \ln f(t) / f(0) \tag{1}
\end{equation*}
$$

In eq. (1), N_{0} is the number of moles of network chains per ce. of the rubber network, $f(t) / f(0)$ is the ratio of stress at time t to stress at time zero. The subject of this note is to show how $q(t)$ is affected by the presence of an antioxidant (inhibitor).

We have measured $q(t)$ by means of eq. (1) in a rubber network produced by photocopolymerizing very thin films (9 mils) of ethyl acrylate with small amounts (2 mole- \%) of tetraethylene glycol dimethacrylate. N_{0} is obtained from the concentrations of both monomers and polymer density. The value of N_{0} for the film studied here is 4.42 $\times 10^{-4}$ moles/ec. This value of N_{0} correctly predicted the measured value of the elastic modulus by use of the equation of state for rubber elasticity.

Stress relaxation measurements were carried out at $140 \pm 0.5^{\circ} \mathrm{C}$. in the absence and in the presence of an antioxidant (inhibitor), namely 2,6 -di-tert-butyl- p-cresol.

The curves for $q(t)$ in the absence of inhibitor and $q_{i}(t)$, which is the scission in the presence of inhibitor at various levels, are shown in Figure 1. It is clear that the inhibitor affects the curve for $q(t)$ vs. t essentially by producing an induction period t_{i} which depends on the amount of inhibitor used.

We define $q\left(t_{i}\right)$ as the number of cuts produced in the uninhibited sample after a length of time t_{t}. In Table I we present data for inhibitor concentration, [Inh], in moles per cc.; t_{i} produced by [Inh]; $q\left(t_{1}\right)$ corresponding to [Inh]; and finally $q\left(t_{i}\right) /[\operatorname{Inh}]$. This quantity $q\left(t_{i}\right) /[\operatorname{Inh}]$ is a fundamental property of the system which tells how many scissions are suppressed by each inhibitor molecule. It is a quantity that should have wide applicability for the scission of numerous polymer networks.

It is very interesting to note that $q\left(t_{i}\right) /[\operatorname{Inh}]$ is very close to unity in the particular case reported here. This means that one inhibitor molecule suppresses one scission in this system. This is a significant finding which emphasizes the value of our new method.

Each inhibitor molecule is also believed to suppress two radical chains. ${ }^{2}$ If this is true our present finding would mean that there is one effective scission per two kinetic

